Data Reuse and Transparency in the Data Lifecycle

Steven Worley
Doug Schuster
Bob Dattore

National Center for Atmospheric Research
Boulder, CO USA
Topics

Data Reuse and Transparency

- What are these data features?
- Why are they important?
- Archiving practices
- Access practices
What are these data features?

- **Data reuse** implies:
 - Expanding usage beyond intended primary community
 - Maintaining reference datasets and building many products from them

- **Data transparency** implies:
 - Reproducibility - ability to reproduce data files or products for users
 - Traceability – tagging and preserving access details
Why are Reuse and Transparency Important?

Data centers/providers are expected to support fact-based outcomes:

- Traditionally for science/research
- Now also for policy makers, community leaders, individual citizens, and commercial interests.
Supporting New Reuse and Transparency

- Decisions by policy makers
 - Traceable open access sources
- Actions by community leaders
 - Planning for societal services
 - Emergencies, water, energy, etc.
- Usage by citizens and educators
 - Inquisitive science, family activities, safety
 - Science learning
- Collaborative commercial applications
 - Tighter coupling between engineering and science
 - Wx forecasts for wind energy production
 - Energy companies contribute mesoscale observations
Archiving practices

- Curation that assures data authenticity
 - Preserve original data formats, to the max. extent possible.
 - Maintaining 100% content and accuracy – serious challenge
- Use a “rich” metadata standard
 - A local standard?
 - Generate discipline and cross-discipline standards
 - E.g. ISO, DIF, etc.
- Create multiple copies
 - Data files, metadata, documentation, and software
 - Disaster recovery – not a secondary concern
Archiving practices

- Collection completeness and integrity
 - Closely monitor data work flow
 - Account for every file
 - Read every file
 - Gather, check, preserve metadata
 - Compute and preserve file checksums

- Maintain dataset lineage / provenance
 - Use approved processes to delete datasets (never?)
 - Establish tiered “level of service” for data
 - Move old / superseded versions to lower level
 - Keep all metadata on the highest tier – discoverable!
Archiving practices

- Explicit data version tracking
 - Sometimes, internal to files
 - Always, within data management system
 - Include notations in all documentation

- Establish Digital Object Identifiers (DOIs)
 - Two-way linkage between publications and data
 - Promotes easy path for follow-on research from publications
 - Leverages skills / facilities of libraries – richer knowledge base
 - Create data family tree connections
Dataset Family Tree Example

Global and Regional Atmospheric and Ocean Re-analyses
NCEP/NCAR, NARR, ERA-40, ERA-Interim, 20CR, OARCA

- **Ocean Clouds** (1900-2010)
- **HadISST** (1871-2011)
- **WASwind** (1950-2009)
- **JMA SST** (1871-2011)
- **NOAA OI SST** (1981-2011)
- **HadSLP** (1871-2011)
- **NOAA ERSST** (1854-2011)
- **Etc.**

International Comprehensive Ocean Atmosphere Data Set (ICOADS)
Global marine surface observations (1662-2011)
Challenges:
- System of immutable IDs – DOIs?
- Multi-institution preservation commitment
- Transparency across institutions, accepted standards/governance
- Promote discovery by sharing metadata, OAI-PMH
- Future, knowledge-based discovery and access via ontologies within semantic web
Access Practices

- User Identification – key to reproducibility
- Record all data access transactions
 - Who received what and when
 - Log product creation constraints from GUIs and web services
 - Log software IDs used for product creation
- Benefits
 - Reproduce a data access process
 - Feedback to users about data changes
 - Use metrics imply how to improve access
Metrics Example
CFSR 6hrly, GRIB2, 1979-2011, 75TB, 28K fields/time step, 168K files

63% of users are non-US

Now exporting 25+ TB monthly

Subsetting, now ~500 requests/month

Track User activity:
- who accessed what and when

DCERC, NCAR, June 5-7 2012
Conclusions

- Data reuse and transparency are rapidly expanding in importance
- Many “best practices” in archive management support reuse and transparency
- Archive access monitoring is necessary for transparency, reproducibility, and traceability
- Need significant improvement in linking data family trees and data to publications to advance reuse and transparency
Research Data Archive at NCAR
http://rda.ucar.edu/